Dr.-Ing. Joachim Schaeffer

Working area(s)

Interpretable machine learning, lithium-ion batteries, features, Gaussian processes, field data, Bayesian optimization, hybrid modeling

Contact

My research is at the intersection of interpretable machine learning and lithium-ion batteries.

I’m developing robust and interpretable methods to predict cycle life from early test or formation data. Furthermore, I work on the application of Gaussian processes for battery fault detection and prediction from field data.

I care about open source, open data and open science.

Google Scholar

GitHub

LinkedIn

Loading...
Loading data from TUbiblio…

Error on loading data

An error has occured when loading publications data from TUbiblio. Please try again later.

  • {{ year }}

    • ({{ publication.date.toString().substring(0,4) }}):
      {{ publication.title }}.
      In: {{ publication.series }}, {{ publication.volume }}, In: {{ publication.book_title }}, In: {{ publication.publication }}, {{ publication.journal_volume}} ({{ publication.number }}), ppp. {{ publication.pagerange }}, {{ publication.place_of_pub }}, {{ publication.publisher }}, {{ publication.institution }}, {{ publication.event_location }}, {{ publication.event_dates }}, ISSN {{ publication.issn }}, e-ISSN {{ publication.eissn }}, ISBN {{ publication.isbn }}, {{ labels[publication.type]?labels[publication.type]:publication.type }}
    • […]

Number of items in this list: {{ publicationsList.length }}
Only the {{publicationsList.length}} latest publications are displayed here.

View complete list at TUbiblio View this list at TUbiblio