Model Order Reduction for Parametric Dynamical Systems with Guaranteed Error Bounds

Master's Thesis

In the context of global parameter tuning of structured controllers in large-scale systems, the exchange of tailored reduced-order models was recently proposed [1]. While many model reduction methods exist, parameter-dependent model order reduction remains challenging.

In this thesis, different parametric model order reduction techniques will be investigated, implemented, and compared. A special focus is the analysis and development of guaranteed error bounds.

First, a basic understanding of both the parameter tuning for large-scale systems [1] and the existing analysis framework is to be developed. Next, extensive literature research regarding parameter-dependent model reduction will be conducted [2].

The methods are to be implemented in Matlab or Python. Their respective advantages and disadvantages will be compared by considering an example system.

Lastly, by using robust control theory, the \mathcal{H}_{∞} error bounds of the methods must be investigated. In [3], convex programming was applied to stabilize a reduced-order model. By expressing the error bound as a linear matrix inequality, this result poses a possible starting point toward incorporating error specifications into the design of the reduced-order model.

Basic knowledge of control theory and optimization is required.

Please do not hesitate to contact me if you have any further questions!

[1] A. Mešanović, U. Münz, and R. Findeisen, "Scalable and Data Privacy Conserving Controller Tuning for Large-Scale Power Networks," in *IEEE Transactions on Control Systems Technology*, vol. 30, no. 2, pp. 696-711, 2022

[2] P. Benner, S. Gugercin, and K. Willcox, "A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems," *SIAM Review*, vol. 57, no. 4, pp. 483-531, 2015.

[3] D. Amsallem and C. Farhat, "Stabilization of projection-based reduced-order models," International Journal for Numerical Methods in Engineering, vol. 91, no. 4, pp. 358-377, 2012.

M.Sc. Roland Schurig

Raum:S3|10-508Tel.:06151 / 16-25184E-Mail:roland.schurig@iat.tu-darmstadt.deHome:www.ccps.tu-darmstadt.de

